3.43 \(\int \frac {\sinh ^3(c+d x)}{(a+b \sinh ^2(c+d x))^2} \, dx\)

Optimal. Leaf size=90 \[ \frac {(a-2 b) \tan ^{-1}\left (\frac {\sqrt {b} \cosh (c+d x)}{\sqrt {a-b}}\right )}{2 b^{3/2} d (a-b)^{3/2}}-\frac {a \cosh (c+d x)}{2 b d (a-b) \left (a+b \cosh ^2(c+d x)-b\right )} \]

[Out]

1/2*(a-2*b)*arctan(cosh(d*x+c)*b^(1/2)/(a-b)^(1/2))/(a-b)^(3/2)/b^(3/2)/d-1/2*a*cosh(d*x+c)/(a-b)/b/d/(a-b+b*c
osh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3186, 385, 205} \[ \frac {(a-2 b) \tan ^{-1}\left (\frac {\sqrt {b} \cosh (c+d x)}{\sqrt {a-b}}\right )}{2 b^{3/2} d (a-b)^{3/2}}-\frac {a \cosh (c+d x)}{2 b d (a-b) \left (a+b \cosh ^2(c+d x)-b\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[c + d*x]^3/(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

((a - 2*b)*ArcTan[(Sqrt[b]*Cosh[c + d*x])/Sqrt[a - b]])/(2*(a - b)^(3/2)*b^(3/2)*d) - (a*Cosh[c + d*x])/(2*(a
- b)*b*d*(a - b + b*Cosh[c + d*x]^2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 3186

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, -Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sinh ^3(c+d x)}{\left (a+b \sinh ^2(c+d x)\right )^2} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {1-x^2}{\left (a-b+b x^2\right )^2} \, dx,x,\cosh (c+d x)\right )}{d}\\ &=-\frac {a \cosh (c+d x)}{2 (a-b) b d \left (a-b+b \cosh ^2(c+d x)\right )}+\frac {(a-2 b) \operatorname {Subst}\left (\int \frac {1}{a-b+b x^2} \, dx,x,\cosh (c+d x)\right )}{2 (a-b) b d}\\ &=\frac {(a-2 b) \tan ^{-1}\left (\frac {\sqrt {b} \cosh (c+d x)}{\sqrt {a-b}}\right )}{2 (a-b)^{3/2} b^{3/2} d}-\frac {a \cosh (c+d x)}{2 (a-b) b d \left (a-b+b \cosh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.63, size = 141, normalized size = 1.57 \[ \frac {-\frac {2 a \sqrt {b} \cosh (c+d x)}{(a-b) (2 a+b \cosh (2 (c+d x))-b)}+\frac {(a-2 b) \left (\tan ^{-1}\left (\frac {\sqrt {b}-i \sqrt {a} \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a-b}}\right )+\tan ^{-1}\left (\frac {\sqrt {b}+i \sqrt {a} \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a-b}}\right )\right )}{(a-b)^{3/2}}}{2 b^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[c + d*x]^3/(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

(((a - 2*b)*(ArcTan[(Sqrt[b] - I*Sqrt[a]*Tanh[(c + d*x)/2])/Sqrt[a - b]] + ArcTan[(Sqrt[b] + I*Sqrt[a]*Tanh[(c
 + d*x)/2])/Sqrt[a - b]]))/(a - b)^(3/2) - (2*a*Sqrt[b]*Cosh[c + d*x])/((a - b)*(2*a - b + b*Cosh[2*(c + d*x)]
)))/(2*b^(3/2)*d)

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 1889, normalized size = 20.99 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^3/(a+b*sinh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[-1/4*(4*(a^2*b - a*b^2)*cosh(d*x + c)^3 + 12*(a^2*b - a*b^2)*cosh(d*x + c)*sinh(d*x + c)^2 + 4*(a^2*b - a*b^2
)*sinh(d*x + c)^3 + ((a*b - 2*b^2)*cosh(d*x + c)^4 + 4*(a*b - 2*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a*b - 2*
b^2)*sinh(d*x + c)^4 + 2*(2*a^2 - 5*a*b + 2*b^2)*cosh(d*x + c)^2 + 2*(3*(a*b - 2*b^2)*cosh(d*x + c)^2 + 2*a^2
- 5*a*b + 2*b^2)*sinh(d*x + c)^2 + a*b - 2*b^2 + 4*((a*b - 2*b^2)*cosh(d*x + c)^3 + (2*a^2 - 5*a*b + 2*b^2)*co
sh(d*x + c))*sinh(d*x + c))*sqrt(-a*b + b^2)*log((b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*si
nh(d*x + c)^4 - 2*(2*a - 3*b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - 2*a + 3*b)*sinh(d*x + c)^2 + 4*(b*cos
h(d*x + c)^3 - (2*a - 3*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(cosh(d*x + c)^3 + 3*cosh(d*x + c)*sinh(d*x + c)^2
 + sinh(d*x + c)^3 + (3*cosh(d*x + c)^2 + 1)*sinh(d*x + c) + cosh(d*x + c))*sqrt(-a*b + b^2) + b)/(b*cosh(d*x
+ c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x
 + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)) + 4*(
a^2*b - a*b^2)*cosh(d*x + c) + 4*(a^2*b - a*b^2 + 3*(a^2*b - a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c))/((a^2*b^3
- 2*a*b^4 + b^5)*d*cosh(d*x + c)^4 + 4*(a^2*b^3 - 2*a*b^4 + b^5)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2*b^3 -
2*a*b^4 + b^5)*d*sinh(d*x + c)^4 + 2*(2*a^3*b^2 - 5*a^2*b^3 + 4*a*b^4 - b^5)*d*cosh(d*x + c)^2 + 2*(3*(a^2*b^3
 - 2*a*b^4 + b^5)*d*cosh(d*x + c)^2 + (2*a^3*b^2 - 5*a^2*b^3 + 4*a*b^4 - b^5)*d)*sinh(d*x + c)^2 + (a^2*b^3 -
2*a*b^4 + b^5)*d + 4*((a^2*b^3 - 2*a*b^4 + b^5)*d*cosh(d*x + c)^3 + (2*a^3*b^2 - 5*a^2*b^3 + 4*a*b^4 - b^5)*d*
cosh(d*x + c))*sinh(d*x + c)), -1/2*(2*(a^2*b - a*b^2)*cosh(d*x + c)^3 + 6*(a^2*b - a*b^2)*cosh(d*x + c)*sinh(
d*x + c)^2 + 2*(a^2*b - a*b^2)*sinh(d*x + c)^3 - ((a*b - 2*b^2)*cosh(d*x + c)^4 + 4*(a*b - 2*b^2)*cosh(d*x + c
)*sinh(d*x + c)^3 + (a*b - 2*b^2)*sinh(d*x + c)^4 + 2*(2*a^2 - 5*a*b + 2*b^2)*cosh(d*x + c)^2 + 2*(3*(a*b - 2*
b^2)*cosh(d*x + c)^2 + 2*a^2 - 5*a*b + 2*b^2)*sinh(d*x + c)^2 + a*b - 2*b^2 + 4*((a*b - 2*b^2)*cosh(d*x + c)^3
 + (2*a^2 - 5*a*b + 2*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b - b^2)*arctan(-1/2*(b*cosh(d*x + c)^3 + 3*b*
cosh(d*x + c)*sinh(d*x + c)^2 + b*sinh(d*x + c)^3 + (4*a - 3*b)*cosh(d*x + c) + (3*b*cosh(d*x + c)^2 + 4*a - 3
*b)*sinh(d*x + c))/sqrt(a*b - b^2)) + ((a*b - 2*b^2)*cosh(d*x + c)^4 + 4*(a*b - 2*b^2)*cosh(d*x + c)*sinh(d*x
+ c)^3 + (a*b - 2*b^2)*sinh(d*x + c)^4 + 2*(2*a^2 - 5*a*b + 2*b^2)*cosh(d*x + c)^2 + 2*(3*(a*b - 2*b^2)*cosh(d
*x + c)^2 + 2*a^2 - 5*a*b + 2*b^2)*sinh(d*x + c)^2 + a*b - 2*b^2 + 4*((a*b - 2*b^2)*cosh(d*x + c)^3 + (2*a^2 -
 5*a*b + 2*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b - b^2)*arctan(-1/2*sqrt(a*b - b^2)*(cosh(d*x + c) + sin
h(d*x + c))/(a - b)) + 2*(a^2*b - a*b^2)*cosh(d*x + c) + 2*(a^2*b - a*b^2 + 3*(a^2*b - a*b^2)*cosh(d*x + c)^2)
*sinh(d*x + c))/((a^2*b^3 - 2*a*b^4 + b^5)*d*cosh(d*x + c)^4 + 4*(a^2*b^3 - 2*a*b^4 + b^5)*d*cosh(d*x + c)*sin
h(d*x + c)^3 + (a^2*b^3 - 2*a*b^4 + b^5)*d*sinh(d*x + c)^4 + 2*(2*a^3*b^2 - 5*a^2*b^3 + 4*a*b^4 - b^5)*d*cosh(
d*x + c)^2 + 2*(3*(a^2*b^3 - 2*a*b^4 + b^5)*d*cosh(d*x + c)^2 + (2*a^3*b^2 - 5*a^2*b^3 + 4*a*b^4 - b^5)*d)*sin
h(d*x + c)^2 + (a^2*b^3 - 2*a*b^4 + b^5)*d + 4*((a^2*b^3 - 2*a*b^4 + b^5)*d*cosh(d*x + c)^3 + (2*a^3*b^2 - 5*a
^2*b^3 + 4*a*b^4 - b^5)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^3/(a+b*sinh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was
done assuming [a,b]=[6,-20]Warning, need to choose a branch for the root of a polynomial with parameters. This
 might be wrong.The choice was done assuming [a,b]=[66,-29]Warning, need to choose a branch for the root of a
polynomial with parameters. This might be wrong.The choice was done assuming [a,b]=[-21,2]Warning, need to cho
ose a branch for the root of a polynomial with parameters. This might be wrong.The choice was done assuming [a
,b]=[15,2]Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.T
he choice was done assuming [a,b]=[-92,94]Warning, need to choose a branch for the root of a polynomial with p
arameters. This might be wrong.The choice was done assuming [a,b]=[44,-86]Warning, need to choose a branch for
 the root of a polynomial with parameters. This might be wrong.The choice was done assuming [a,b]=[-27,-68]War
ning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was
 done assuming [a,b]=[-70,50]Warning, need to choose a branch for the root of a polynomial with parameters. Th
is might be wrong.The choice was done assuming [a,b]=[-63,-1]Warning, need to choose a branch for the root of
a polynomial with parameters. This might be wrong.The choice was done assuming [a,b]=[91,-7]Undef/Unsigned Inf
 encountered in limitEvaluation time: 1.77Limit: Max order reached or unable to make series expansion Error: B
ad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.06, size = 341, normalized size = 3.79 \[ \frac {16 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \left (16 a b -16 b^{2}\right ) \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +4 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a \right )}-\frac {32 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}{d \left (16 a b -16 b^{2}\right ) \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +4 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a \right )}-\frac {16 a}{d \left (16 a b -16 b^{2}\right ) \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +4 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a \right )}+\frac {8 \arctan \left (\frac {2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 a +4 b}{4 \sqrt {a b -b^{2}}}\right ) a}{d \left (16 a b -16 b^{2}\right ) \sqrt {a b -b^{2}}}-\frac {16 \arctan \left (\frac {2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 a +4 b}{4 \sqrt {a b -b^{2}}}\right ) b}{d \left (16 a b -16 b^{2}\right ) \sqrt {a b -b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)^3/(a+b*sinh(d*x+c)^2)^2,x)

[Out]

16/d/(16*a*b-16*b^2)/(tanh(1/2*d*x+1/2*c)^4*a-2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)*a*tanh(1/
2*d*x+1/2*c)^2-32/d/(16*a*b-16*b^2)/(tanh(1/2*d*x+1/2*c)^4*a-2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2
*b+a)*tanh(1/2*d*x+1/2*c)^2*b-16/d/(16*a*b-16*b^2)/(tanh(1/2*d*x+1/2*c)^4*a-2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1
/2*d*x+1/2*c)^2*b+a)*a+8/d/(16*a*b-16*b^2)/(a*b-b^2)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a-2*a+4*b)/(a*b
-b^2)^(1/2))*a-16/d/(16*a*b-16*b^2)/(a*b-b^2)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a-2*a+4*b)/(a*b-b^2)^(
1/2))*b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {a e^{\left (3 \, d x + 3 \, c\right )} + a e^{\left (d x + c\right )}}{a b^{2} d - b^{3} d + {\left (a b^{2} d e^{\left (4 \, c\right )} - b^{3} d e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )} + 2 \, {\left (2 \, a^{2} b d e^{\left (2 \, c\right )} - 3 \, a b^{2} d e^{\left (2 \, c\right )} + b^{3} d e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}} + \frac {1}{8} \, \int \frac {8 \, {\left ({\left (a e^{\left (3 \, c\right )} - 2 \, b e^{\left (3 \, c\right )}\right )} e^{\left (3 \, d x\right )} - {\left (a e^{c} - 2 \, b e^{c}\right )} e^{\left (d x\right )}\right )}}{a b^{2} - b^{3} + {\left (a b^{2} e^{\left (4 \, c\right )} - b^{3} e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )} + 2 \, {\left (2 \, a^{2} b e^{\left (2 \, c\right )} - 3 \, a b^{2} e^{\left (2 \, c\right )} + b^{3} e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^3/(a+b*sinh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-(a*e^(3*d*x + 3*c) + a*e^(d*x + c))/(a*b^2*d - b^3*d + (a*b^2*d*e^(4*c) - b^3*d*e^(4*c))*e^(4*d*x) + 2*(2*a^2
*b*d*e^(2*c) - 3*a*b^2*d*e^(2*c) + b^3*d*e^(2*c))*e^(2*d*x)) + 1/8*integrate(8*((a*e^(3*c) - 2*b*e^(3*c))*e^(3
*d*x) - (a*e^c - 2*b*e^c)*e^(d*x))/(a*b^2 - b^3 + (a*b^2*e^(4*c) - b^3*e^(4*c))*e^(4*d*x) + 2*(2*a^2*b*e^(2*c)
 - 3*a*b^2*e^(2*c) + b^3*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {sinh}\left (c+d\,x\right )}^3}{{\left (b\,{\mathrm {sinh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(c + d*x)^3/(a + b*sinh(c + d*x)^2)^2,x)

[Out]

int(sinh(c + d*x)^3/(a + b*sinh(c + d*x)^2)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)**3/(a+b*sinh(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________